

Automatic Detection of Linguistic Indicators As a Means of Early Prediction of Alzheimer's and of Related Dementias: A Cross Linguistic Analysis

Vassiliki Rentoumi*, PhD¹, George Paliouras, PhD¹, Konstantinos Bougiatiotis, MSc¹, Dimitra Arfani², Katerina Fragkopoulou², Spyridoula Varlokosta PhD² and Peter Garrard, PhD, FRCP³ ¹NCSR 'Demokritos', Athens, Greece, ²National and Kapodistrian University of Athens (UoA), ATHENS, Greece, ³St George's, University of London, United Kingdom, *vassiliki.rentoumi@gmail.com

Background

- Alzheimer's Disease (AD) and other types of dementia are associated with changes in spoken language
- Language Evaluation is time consuming and in most cases subjective

Aims of the study

- To adopt a computational approach based on machine learning (ML) to analyze language samples from native speakers of English and Greek in order to automatically detect early indicators of AD
- To identify AD-induced language characteristics that are either cross-linguistic or language-specific

Materials and Methods

Speech samples were taken from three sources: Two from archived (English) language resources and one (Greek) collected for this project. Participants were shown the "cookie theft" picture and were asked to describe what they could see happening.

Analytical Approach

Feature Extraction: Bag of Words assumption (BoW), Part of Speech (PoS) tags, Lexical Variation (LV) and Syntactic Complexity (SC) measures

Feature Selection: (1) Common top ranked Information Gain (IG) words across the three data sets; (2) Commonly distinctive PoS, LV, SC between AD & NC groups (pvalue < 0.05) across data sets

Classification of spoken samples

Data sets Class: Samples (Avg. MMSE)	DEMENTIA (US) ²	OPTIMA (UK) ³	GREEK
	AD: 309 (19.0)	AD: 180 (21.1)	AD: 17 (20.0)
	NC: 246 (27.5)	NC: 248 (27.0)	NC: 14 (28.6)

Cross Linguistic Analysis Results

(1) Correlations/overlap of common top-100 ranked (IG) words

	DEMENTIA- GREEK	DEMENTIA- OPTIMA	OPTIMA- GREEK
Pearson's Correlation	0.3	0.79	0.52
Spearman's Rank Correlation	0.26	0.62	0.39
% Common words in top-100	0.49	0.36	0.41

(2) Commonly distinctive (t-Test, p<0.05) PoS, LV, SC features between AD & NC groups across data sets

Crosslingual (i.e. all samples)	US English & Greek
*CCW (AD >NC)	Adverb Freq. (AD>NC)
**CWR (AD>NC)	Nouns/Tokens (NC>AD)
Nouns Freq. (AD>NC)	Pronouns/Nouns (AD>NC)
	Mean Length Sentence (NC>AD)

^{*}Closed Class Words Count (conjunctions, determiners, prepositions, pronouns)

Classification Results

- Crosslingual: CCW, CWR, Nouns Freq.
- Crosslingual + Corp. Spec: CCW, CWR, Nouns Freq., along with corpus specific statist. significant features
- Best Model (BoW): Tf-idf scores of lemmatized unigrams and bigrams

Conclusions

- ✓ **Discriminative** power of LV, SC and PoS features verified across languages
- ✓ State-of-the art accuracy of deployed system
- ✓ Development of CogAware prototype

Future Work

- Fusion of crosslingual features with best model (complementarity of errors)
- Preliminary findings indicate enhanced performance

Additional Work

- > Research prototype for automatic language-based assessment of AD risk factor
- ➤ Android application and Google Drive Add-on
- **PQuick** and **accurate screening** of patients for AD
- ➤ Pilot deployed in day-care centers (GR)

University of Maryland Institute for Advanced

GE CP

Spanish Lung Cancer Group

Funded by the European Union http://project-iasis.eu/

References

¹Goodglass, Harold. Boston diagnostic aphasia examination: Short form record booklet. Lippincott Williams & Wilkins, 2000.

²Becker, J. T., Boller, F., Lopez, O. L., Saxton, J., & McGonigle, K. L. (1994). The natural history of Alzheimer's disease: description of study cohort and accuracy of diagnosis. Archives of Neurology, *51(6)*, 585-594.

https://www.ndcn.ox.ac.uk/research/centre-prevention-stroke-dementia/resources/optima-oxfordproject-to-investigate-memory-and-ageing

Universität

^{**}Closed Class/Open Class Words Ratio (Open Class: nouns, adjectives, verbs, adverbs)